Attribution of projected changes in summertime US ozone and PM2.5 concentrations to global changes
نویسندگان
چکیده
The impact that changes in future climate, anthropogenic US emissions, background tropospheric composition, and land-use have on summertime regional US ozone and PM2.5 concentrations is examined through a matrix of downscaled regional air quality simulations, where each set of simulations was conducted for five months of July climatology, using the Community Multi-scale Air Quality (CMAQ) model. Projected regional scale changes in meteorology due to climate change under the Intergovernmental Panel on Climate Change (IPCC) A2 scenario are derived through the downscaling of Parallel Climate Model (PCM) output with the MM5 meteorological model. Future chemical boundary conditions are obtained through downscaling of MOZART-2 (Model for Ozone and Related Chemical Tracers, version 2.4) global chemical model simulations based on the IPCC Special Report on Emissions Scenarios (SRES) A2 emissions scenario. Projected changes in US anthropogenic emissions are estimated using the EPA Economic Growth Analysis System (EGAS), and changes in land-use are projected using data from the Community Land Model (CLM) and the Spatially Explicit Regional Growth Model (SERGOM). For July conditions, changes in chemical boundary conditions are found to have the largest impact (+5 ppbv) on average daily maximum 8-h (DM8H) ozone. Changes in US anthropogenic emissions are projected to increase average DM8H ozone by +3 ppbv. Land-use changes are projected to have a significant influence on regional air quality due to the impact these changes have on biogenic hydrocarbon emissions. When climate changes and land-use changes are conCorrespondence to: B. Lamb ([email protected]) sidered simultaneously, the average DM8H ozone decreases due to a reduction in biogenic VOC emissions (−2.6 ppbv). Changes in average 24-h (A24-h) PM2.5 concentrations are dominated by projected changes in anthropogenic emissions (+3μg m−3), while changes in chemical boundary conditions have a negligible effect. On average, climate change reduces A24-h PM2.5 concentrations by −0.9μg m−3, but this reduction is more than tripled in the Southeastern US due to increased precipitation and wet deposition.
منابع مشابه
Attribution of projected changes in U.S. ozone and PM2.5 concentrations to global changes
The impact that changes in future climate, anthropogenic U.S. emissions, background tropospheric composition, and land-use have on regional U.S. ozone and PM2.5 concentrations is examined through a matrix of downscaled regional air quality simulations using the Community Multi-scale Air Quality (CMAQ) model. Projected regional scale changes in meteorology due to climate change under the Intergo...
متن کاملThe effect of future ambient air pollution on human premature mortality to 2100 using output from the ACCMIP model ensemble.
Ambient air pollution from ground-level ozone and fine particulate matter (PM2.5) is associated with premature mortality. Future concentrations of these air pollutants will be driven by natural and anthropogenic emissions and by climate change. Using anthropogenic and biomass burning emissions projected in the four Representative Concentration Pathway scenarios (RCPs), the ACCMIP ensemble of ch...
متن کاملQuantification of the impact of climate uncertainty on regional air quality
Uncertainties in calculated impacts of climate forecasts on future regional air quality are investigated using downscaled MM5 meteorological fields from the NASA GISS and MIT IGSM global models and the CMAQ model in 2050 in the continental US. Differences between three future scenarios: high-extreme, low-extreme and base case, are used for quantifying effects of climate uncertainty on regional ...
متن کاملStrong Dependence of U.S. Summertime Air Quality on the Decadal Variability of Atlantic Sea Surface Temperatures
We find that summertime air quality in the eastern U.S. displays strong dependence on North Atlantic sea surface temperatures, resulting from large-scale ocean-atmosphere interactions. Using observations, reanalysis data sets, and climate model simulations, we further identify a multidecadal variability in surface air quality driven by the Atlantic Multidecadal Oscillation (AMO). In one-half cy...
متن کاملImpact of global climate change on ozone, particulate matter, and secondary organic aerosol concentrations in California: A model perturbation analysis
Air quality simulations are performed to determine the impact of changes in future climate and emissions on regional air quality in the South Coast Air Basin (SoCAB) of California. The perturbation parameters considered in this study include (1) temperature, (2) absolute humidity, (3) biogenic VOC emissions due to temperature changes, and (4) boundary conditions. All parameters are first pertur...
متن کامل